Development of Amphibian-based Models of Thyroid-axis Disruption

Michael Hornung, Joseph Tietge, Sigmund Degitz

US EPA, Mid-Continent Ecology Division, Duluth, MN

McKim Conference
June 2006
Duluth, MN

Preview

- Why is EPA working on thyroid axis
- Thyroid axis summary
- Amphibian metamorphosis assays
- In vitro assays
- High-throughput assays for QSAR modeling

U.S. Law Requires EPA to Evaluate Chemicals for Their Potential to Affect Endocrine Function

- Food Quality Protection Act
 - estrogens or other endocrine effects

- Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC)
- Estrogens, androgens, and thyroid hormone

Why Thyroid Hormone?

- Important for vertebrate growth and development
 - Protection of infants and children
 - > Neurodevelopment
 - > Reproduction

The Challenge Facing EPA

- Ecological and Human Health Risk Assessments for chemicals seek to anticipate and limit adverse outcomes
 - Proactive vs Reactive
- Challenges:
 - Limited data
 - Pre-Manufacture Notifications ~ 2500 new chemicals/yr
 - Large number of chemicals
 - TSCA Industrial Inventory >70,000 chemicals
 - 90 day turn around
 - Pesticide Inerts
 - Which ~800 need tolerances determined by '06
 - EDCs; (FQPA)
 - >6000 chemicals need to be prioritized

Thyroid-axis Systems Model

Thyroid Hormone Regulation

Deiodinase Activities

Rationale for a Frog Metamorphosis Model

- Metamorphosis is mediated by thyroid hormone
 - Resulting in great sensitivity to disruption
 - Easy apical observations
- Molecular events are well characterized
- Easy to raise and test in the laboratory
 - Xenopus laevis
 - > Xenopus tropicalis

EDSTAC Tier 1 Frog Metamorphosis Assay

- African Clawed Frog, Xenopus laevis
- Expose at Stage 60
 - Coincident with endogenous TH peak
- 14 Day Exposure Through Stage 66
- Tail Length
- Resorption faster than controls = agonist
- Resorption slower than controls = antagonist

Xenopus Metamorphosis

X. laevis Plasma Thyroid Hormones Leluop and Buscaglia 1977

Analysis of EDSTAC- Proposed Amphibian Metamorphosis Assay

EDSTAC-Proposed Amphibian Metamorphosis Assay was not ready for use as a screening tool

- 1) Developmental stage 60 is relatively insensitive
- 2) Tail tissue is relatively insensitive
- 3) Changes in tail resorption rates not diagnostic
- 4) Insufficient data on known agonists/antagonists
- 5) Interaction with other endocrine systems is source of uncertainty

MED Thyroid Project Objectives

- Develop a whole organism based screening assay for the agency (determine appropriate stage)
- Conduct studies with known HPT disruptors
- Develop the appropriate diagnostic measure to establish confidence
 - What are the appropriate tissue level endpoints?
 - Can gene and protein expression be used as indicators of thyroid axis disruption?

Research Approach

Chemical Exposure

Organismal Response

Protein Profiling

Gene Expression

Thyroid Disruption Pathways

Experimental Approach: Organismal Response

X. laevis Plasma Thyroid Hormones Leluop and Buscaglia 1977

Thyroid Disruption: T4 Synthesis

Effect of Perchlorate on Development and Thyroid Histology

Effect of Methimazole on Development and Thyroid Histology

Summary of Findings

- X. laevis is sensitive to model thyroid pathway modulators
 - Methimazole, 6-PTU, Perchlorate
- Stage 54 is as sensitive as stage 51
- Thyroid histology is an essential component of assay
 - More sensitive than developmental rate
 - Diagnostic
 - Rapid

Develop a Diagnostic Research Approach

 Link chemical-biomolecule interaction to whole organism effects

Develop computational approaches

Developing Diagnostic Indicators

- Look at things you know (QPCR, ELISA..)
 - Normal development
 - Chemical exposure
- Go Fishing
 - Gene arrays
 - 2D protein analysis
 - MS based protein analysis

Endpoints in the Thyroid Gland

Approach

- Examine gene expression during normal metamorphosis
- Examine gene expression following in vivo exposure
- T4 production and gene expression by thyroid explant cultures
- Gene array analysis following in vivo exposure

Gene Expression in Thyroid Gland Thyroid Peroxidase

Developmental Expression

Gene Expression in Thyroid Gland Sodium/Iodide Symporter

Developmental Expression

Gene Expression in Thyroid Gland Type II Deiodinase

Developmental Expression

What could we look at in the pituitary?

Gene Expression in Pituitary Thyroid Stimulating Hormone

Developmental Expression

Gene Expression in Pituitary Type II Deiodinase

Developmental Expression

Research Approach

In vitro models: tissue explants

- Thyroid
- Pituitary
- > Hypothalamus
- Co-cultures

Thyroid Gland Explant Culture

Dissect thyroid glands from pro-metamorphic tadpoles

Culture at 21°C in L-15 media

- 0.1% BSA
- potassium iodide
- antibiotic/antimycotic

Add bovine TSH to stimulate T4 production & release into media

Collect media (24-144h) and determine T4 by ELISA

Collect glands for protein analysis or gene expression

Thyroid Gland Culture Effects of TSH on T4 release in culture

Thyroid gland culture Response to TSH and methimazole Stage 59

Thyroid gland culture Response to TSH and methimazole Stage 55

Thyroid Gland Culture: TSH regulation of T4 synthesis genes

Thyroid Gland Culture TSH Regulation of deiodinase in culture

Protein Profiling

- Jose Serrano MED
- Link protien changes with mode of action and whole organism outcome
- Treat with model thyroid axis inhibitors
 - Perchlorate (iodine uptake inhibitor)
 - PTU (TPO inhibitor)
 - Methimazole (TPO inhibitor)
- Remove Brain
- 2D gel and iTRAQ
- Characterize proteins changes common to two or more inhibitors

Gel of Brain Proteins From Perchlorate Treated Tadpoles

Methodology For iTRAQ Labeling and MS Analysis

Total Ion Chromatogram in-line RPLC/ESI/QUAD/TOF MS (1D-LC/MS)

Up-Regulated Proteins

Protein id Xenopus laevis	
*Validated by iTRAQ	General Biological Function
*SNAP25b	Membrane fusion
*Hnrpa1-prov	Gene expression modulation
Hnrpk-prov	Gene expression modulation
*Eno-1-prov	Metabolism
*aldolase	Metabolism
*Hspa5-prov	Stress response
XNIF	Neuronal filament protein

Down-Regulated Proteins

Protein id Xenopus laevis	
*Validated by iTRAQ	General Biological Function
*Ywhaq-prov	Gene encoding control
MGC64423	Gene encoding control
*Hb T3/T4	Oxygen Transport
Calbindin D	Metamorphosis
DRP-3 neural	Axonal outgrowth/path
Alpha-Fodrin	Cytoskeletal support
Flotillin 1C	Raft protein
Vcp-prov	Cell division
Cofilin1	Structural support

Thyroid Disruption Pathways

Thyroid Axis Disruption by UDPTG Inducers

- Jasim Chowdhury NRC
- UDP-glucuronosyltransferase (UDPGT)
- Conjugates endobiotics and xenobiotics for elimination

- 35 known UDPGT isoforms across animal species
- Xenopus isoforms are not yet known
- 6 UDPGT genes are identified for testing
- Model UDPGT Inducer: Phenobarbital

Effects of phenobarbital on larval development

Final tadpole stages

Phenobarbital (mg/L)

Proportion in stage

Effects of phenobarbital on thyroid glands (stage-60 tadpoles)

Histology

Control

1500 mg/L

Thyroid genes in stage-60 tadpoles

Overview of enzyme assays for TH conjugates

Conclusions

- A short term assay can be developed for screening chemicals
- X. laevis respond to model thyroid pathway modulators in a similar manner to higher vertebrates
- A multi-endpoint strategy is useful for diagnostic information on chemical effects - linking biochemical/molecular endpoints with whole organism effects

Predictive Toxicology / Thyroid Systems Model

Thyroid Project Team

S. Degitz

J. Tietge

G. Holcombe

P. Kosian

D. Hammermeister

J. Korte

J. Serrano

S. Batterman

M. Hornung

J. Chowdhury

K. Thoemke

H. Kerr

L. Korte

M. Bugge

Collaborators

- B. Witthuhn (University of Minnesota)
- L. Higgins (University of Minnesota)
- M. Martinez (University of Minnesota)
- C. Helbing (University of Victoria)
- S. Wiley (PNNL)

